
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.

Clear["Global`*⋆"]

1 - 5 Doolittle’s method
Show the factorization and solve by Doolittle’s method.

Okay, first there seems to be disagreement about decomposing. First Version: I am looking 
at the matrix in example 1 on p. 853, the matrix being m={{3,5,2},{0,8,2},{6,2,8}}. For 
the Doolittle decomposed matrix upper, the text comes up with 
m={{3,5,2},{0,8,2},{0,0,6}} as the upper diagonal matrix, and 
m={{1,0,0},{0,1,0},{2,-1,1}} as the lower diagonal matrix. Using Mathematica 
LUDecomposition results in m={{3,5,2},{0,8,2},{2,-1,6}}. This answer is coded into a 
composite upper and lower diagonal matrix. When properly decoded, the lower is the same 
as the text lower, and so the pairs are equal. Thus Doolittle Text is equal to Mathematica 
LUD, which is what I wanted to know. On-line discussion and timing tests show LUD is very 
fast. I think I will make it my default, anyway for the present. There are at least 3 Mathemat-
ica modules discussed at https://mathematica.stackexchange.com/questions/78700/how-to-speed-up-
auxilary-doolittledecomposite-function and they all agree with LUDecomposition. Second Ver-
sion: There is an on-line matrix decomposer at https://www.easycalculation.com/matrix/lu-
decomposition-matrix.php, and it returns m={{6,2,8},{0,8,2},{0,0,-3}} for upper. This version 
of the decomposure is also the one returned at the site https://keisan.casio.com/exec/sys-
tem/15076953047019.

So can I reconstruct the original by dotting the lower with upper? Second version above, 
first
m = {{3, 5, 2}, {0, 8, 2}, {6, 2, 8}};
u = {{6, 2, 8}, {0, 8, 2}, {0, 0, -−3}};
l = {{1, 0, 0}, {0, 1, 0}, {.5, .5, 1}};

l.u

{{6., 2., 8.}, {0., 8., 2.}, {3., 5., 2.}}

This is sort of like the original, except with upper and lower rows switched. I don’t know if 
it is right or wrong, but both the last two sites got the same thing, and, one being Casio, I 
tend to give them some credit. Next, First version, LUDecomposition by Mathematica and 
the SEMma question
u = {{3, 5, 2}, {0, 8, 2}, {0, 0, 6}};
l = {{1, 0, 0}, {0, 1, 0}, {2, -−1, 1}};



l.u

{{3, 5, 2}, {0, 8, 2}, {6, 2, 8}}

That looks good, restoring the original matrix exactly. With that out of the way, I can go on 
to the actual problems for this problem section.

1. 4 x1 + 5 x2 ⩵ 14 ; 12 x1 + 14 x2 ⩵ 36

m = {{4, 5}, {12, 14}}
n = {{14}, {36}}

{{4, 5}, {12, 14}}

{{14}, {36}}

LUDecomposition[m]

{{{4, 5}, {3, -−1}}, {1, 2}, 0}

After decoding, this would be u={{4,5},{0,-1}}, l={{1,0},{3,1}}

u = {{4, 5}, {0, -−1}};
l = {{1, 0}, {3, 1}};

l.u

{{4, 5}, {12, 14}}

Successfully reconstituted.
LinearSolve[m, n]

{{-−4}, {6}}

Both factorization and multiplication agree with the text answer.

3. 5 x1 + 4 x2 + x3 ⩵ 6.8 ;
10 x1 + 9 x2 + 4 x3 ⩵ 17.6 ; 10 x1 + 13 x2 + 15 x3 ⩵ 38.4

Since this subsection of problems was supposed to utilize Doolittle and not LUD, I will 
insert a Doolittle module and credit it to 2012rcampion as responder to the question on 
SEMma, https://mathematica.stackexchange.com/questions/78700/how-to-speed-up-auxilary-doolittlede-
composite-function. It seems to have the same functionality as LUD, except that it does not 
include pivoting and condition information.
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doolittleDecomposite2[mat_?MatrixQ] :=
Module{temp = ConstantArray[0, Dimensions@mat], row = Length@mat},

DoDo[temp[[k, j]] =

mat[[k, j]] -− temp[[k, ;; k -− 1]].temp[[ ;; k -− 1, j]], {j, k, row}];
Dotemp[[i, k]] = (mat[[i, k]] -− temp[[i, ;; k -− 1]].

temp[[ ;; k -− 1, k]])  temp[[k, k]], {i, k + 1, row};, {k, row};

temp

m = {{5, 4, 1}, {10, 9, 4}, {10, 13, 15}};
n = {{6.8}, {17.6}, {38.4}};

doolittleDecomposite2[m]

{{5, 4, 1}, {2, 1, 2}, {2, 5, 3}}

Decoding, I make it out as

u = {{5, 4, 1}, {0, 1, 2}, {0, 0, 3}};
l = {{1, 0, 0}, {2, 1, 0}, {2, 5, 1}}

l.u

{{5, 4, 1}, {10, 9, 4}, {10, 13, 15}}

Success in reconstituting.
LinearSolve[m, n]

{{0.4}, {0.8}, {1.6}}

Both factorization and multiplication agree with the text answer.

5. 3 x1 + 9 x2 + 6 x3 ⩵ 4.6 ;
18 x1 + 48 x2 + 39 x3 = 27.2 ; 9 x1 -− 27 x2 + 42 x3 ⩵ 9.0

m = {{3, 9, 6}, {18, 48, 39}, {9, -−27, 42}};
n = {{4.6}, {27.2}, {9.0}};

doolittleDecomposite2[m]

{{3, 9, 6}, {6, -−6, 3}, {3, 9, -−3}}

Decoding, what I see is

u = {{3, 9, 6}, {0, -−6, 3}, {0, 0, -−3}};
l = {{1, 0, 0}, {6, 1, 0}, {3, 9, 1}};

l.u

{{3, 9, 6}, {18, 48, 39}, {9, -−27, 42}}

Success in reconstituting.
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LinearSolve[m, n]

{{-−0.0666667}, {0.266667}, {0.4}}

N[{-−1 /∕ 15, 4 /∕ 15}]

{-−0.0666667, 0.266667}

Both factorization and multiplication agree with the text answer.

7 - 12 Cholesky’s method
Show the factorization and solve.

7. 9 x1 + 6 x2 + 12 x3 ⩵ 17.4 ;
6 x1 + 13 x2 + 11 x3 ⩵ 23.6 ; 12 x1 + 11 x2 + 26 x3 ⩵ 30.8

Mathematica has a function for Cholesky decomposition, but it returns only the upper 
diagonal matrix. Let’s see what effect that may have.
m = {{9, 6, 12}, {6, 13, 11}, {12, 11, 26}};
n = {{17.4}, {23.6}, {30.8}};

cd = CholeskyDecomposition[m]

{{3, 2, 4}, {0, 3, 1}, {0, 0, 3}}

The returned expression from CD being the upper diag matrix, I need to use the 
ConjugateTranspose to check it
ct = ConjugateTranspose[%]

{{3, 0, 0}, {2, 3, 0}, {4, 1, 3}}

ct.cd

{{9, 6, 12}, {6, 13, 11}, {12, 11, 26}}

It looks good. And it’s interesting, I don’t think I ever ‘percentaged’ up through a text cell 
before.
LinearSolve[m, n]

{{0.6}, {1.2}, {0.4}}

9. 0.01 x1 + 0 + 0.03 x3 ⩵ 0.14 ;
0 + 0.16 x2 + 0.08 x3 ⩵ 0.16 ; 0.03 x1 + 0.08 x2 + 0.14 x3 ⩵ 0.54

m = {{0.01, 0, 0.03}, {0, 0.16, 0.08}, {0.03, 0.08, 0.14}};
n = {{0.14}, {0.16}, {0.54}};
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cd = CholeskyDecomposition[m]

{{0.1, 0., 0.3}, {0., 0.4, 0.2}, {0., 0., 0.1}}

The returned expression from CD being the upper diag mat, I need to use the 
ConjugateTranspose to check it
ct = ConjugateTranspose[%]

{{0.1, 0., 0.}, {0., 0.4, 0.}, {0.3, 0.2, 0.1}}

ct.cd

{{0.01, 0., 0.03}, {0., 0.16, 0.08}, {0.03, 0.08, 0.14}}

The reconstitution was successful.
LinearSolve[m, n]

{{2.}, {-−1.}, {4.}}

Green above agrees with text. As for the multiplication, the text answer is 
{{2.},{-11.},{4.}}. I don’t see how that can be reconciled with the other matrix attributes, 
so I assume it is a typo. (I also got verification from WolframAlpha for the yellow answer.)

11. x1 -− x2 + 3 x3 + 2 x4 ⩵ 15 ; -−x1 + 5 x2 -− 5 x3 -− 2 x4 ⩵ -−35 ;
3 x1 -− 5 x2 + 19 x3 + 3 x4 ⩵ 94 ; 2 x1 -− 2 x2 + 3 x3 + 21 x4 ⩵ 1

m = {{1, -−1, 3, 2}, {-−1, 5, -−5, -−2}, {3, -−5, 19, 3}, {2, -−2, 3, 21}};
n = {{15}, {-−35}, {94}, {1}};

cd = CholeskyDecomposition[m]

{{1, -−1, 3, 2}, {0, 2, -−1, 0}, {0, 0, 3, -−1}, {0, 0, 0, 4}}

Here I need to use the ConjugateTranspose to check it
ct = ConjugateTranspose[%]

{{1, 0, 0, 0}, {-−1, 2, 0, 0}, {3, -−1, 3, 0}, {2, 0, -−1, 4}}

ct.cd

{{1, -−1, 3, 2}, {-−1, 5, -−5, -−2}, {3, -−5, 19, 3}, {2, -−2, 3, 21}}

The reconstitution was successful.
LinearSolve[m, n]

{{2}, {-−3}, {4}, {-−1}}

The last problem demonstrated that a 4x4 matrix problem is no more time-consuming than 
3x3.
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The last problem demonstrated that a 4x4 matrix problem is no more time-consuming than 
3x3.

13. Definiteness. Let A, B be n× n and positive definite. Are -− A,
AT, A + B, A -− B positive definite?

I would say no, yes, yes, no. The rationale comes from looking at the pivots. The site http-
s://www.gaussianwaves.com/2013/04/tests-for-positive-definiteness-of-a-matrix/ gives some easy-to-
use info to test matrices for positive-definiteness. I am assuming the information is correct. 
Note that first of all, the matrix in question has to be symmetric. Why did I give the answers 
I gave? Hey, I just checked, and all answers are right! Okay, nr 1., multiplying by -1 immedi-
ately negates all positive pivots, ruling out the possibility of positive-definiteness. Nr 2., 
With transpose-ization, entries in the matrix may be multiplied by fractions, but the sign 
will stay the same, thus if A is positive-definite, then so should AT be also. Third and fourth 
are yes and no because A+B preserves all the positive signs in both, whereas A-B could ruin 
positive definiteness for A if any pivot entries in B are larger than the site they will be sub-
tracted from in A.

15 - 19 Inverse
Find the inverse by the Gauss-Jordan method, showing the details.

15.  In problem 1.

From problem 1
4 x1 + 5 x2 ⩵ 14 ; 12 x1 + 14 x2 ⩵ 36

12 x1 + 14 x2 ⩵ 36

m = {{4, 5}, {12, 14}}

{{4, 5}, {12, 14}}

Inverse[m]

-−
7

2
,
5

4
, {3, -−1}

The green cell above matches the answer in the text. Obviously not done by Gauss-Jordan, 
but the inverse just the same.

17.  In Team Project 6 (c).

From 6(c), use Doolittle’s to factorize 
m = {{1, -−4, 2}, {-−4, 25, 4}, {2, 4, 24}};
n = {{17.4}, {23.6}, {30.8}};
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doolittleDecomposite2[mat_?MatrixQ] :=
Module{temp = ConstantArray[0, Dimensions@mat], row = Length@mat},

DoDo[temp[[k, j]] =

mat[[k, j]] -− temp[[k, ;; k -− 1]].temp[[ ;; k -− 1, j]], {j, k, row}];
Dotemp[[i, k]] = (mat[[i, k]] -− temp[[i, ;; k -− 1]].

temp[[ ;; k -− 1, k]])  temp[[k, k]], {i, k + 1, row};, {k, row};

temp

doolittleDecomposite2[m]

{1, -−4, 2}, {-−4, 9, 12}, 2,
4

3
, 4

LUDecomposition[m]

{1, -−4, 2}, {-−4, 9, 12}, 2,
4

3
, 4, {1, 2, 3}, 0

Inverse[m]


146

9
,
26

9
, -−

11

6
, 

26

9
,
5

9
, -−

1

3
, -−

11

6
, -−

1

3
,
1

4


PossibleZeroQ
146

9
-−
584

36


True

The expression in green is equivalent to the answer in the text, after an alternate denomina-
tor pattern is identified by the PZQ.

19.  In problem 12.

m = {{4, 2, 4, 0}, {2, 2, 3, 2}, {4, 3, 6, 3}, {0, 2, 3, 9}};
n = {{20}, {36}, {60}, {122}};

Inverse[m]


21

16
, -−

3

8
, -−

7

8
,
3

8
, -−

3

8
,
9

4
, -−

3

4
, -−

1

4
,

-−
7

8
, -−

3

4
,
5

4
, -−

1

4
, 

3

8
, -−

1

4
, -−

1

4
,
1

4


The expression in the green cell above matches the answer in the text.
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